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NOMENCLATURE 

4 radius of sphere ; 
& Bouguer number, aa ; 
E”, exponential integral of order n ; 
1; intensity ; 
4, Hopf s function ; 
49 radial heat flux; 

ii, 
dimensionless heat flux, r%j/ojT$ - T~)a2 ; 
terms in the expansion of Q ; 

r, radius measured from the center of the sphere ; 
?; temperature ; 
Z, outer coordinate, ar. 

Greek symbols 
constant volumetric absorption coefficient ; 
coefficients in the asymptotic expansions ; 
terms in the inner expansion of 6 ; 
terms in the outer expansion of & ; 
dimensionless emissive power, ’ (T4 - T!J/ 
(C - C); 
modified emissive power, z@(z); 
coslj; 
cos 4, = (r’ - a’)*/r ; 
inner coordinate, (r - a)/a ; 
Stefan-Boltxmann constant ; 
angle between radius vector and intensity. 

denotes conditions in the gas at the surface of 
the sphere ; 
denotes surface condition ; 
denotes condition at infinity. 

Superscripts 

:: 
denotes composite quantity; 
denotes inner-region quantity ; 

(O), denotes outer-region quantity. 

1. INTRODUCTION 
RADIATIVE transfer in a spherically symmetric medium has 

t This work was performed under Air Force Con- 
tract No. FO4701-68-C-0200. 

recently received considerable emphasis. Radiative transfer 
between concentric spheres with a heat-generating gas 
has been investigated in [l-4]. The concentric sphere problem 
with an emitting-absorbing grey gas has been studied in 
[3-81. The emphasis in these papers, as in this one, is the 
determination of the emissive power and radiant heat flux. 
This is in contrast to the astrophysical approach, in which 
the specific intensity is of prune interest. 

This work investigates the radiative 4ransfer from a single 
sphere of radius a situated in a quiescent nonconducting gas 
with a constant volumetric absorption coefftcient u. Although 
this is a limiting concentric sphere case with the outer sphere 
at infinity, none of the aforementioned references, except [6], 
considered this limit. Since [6] gives the asymptotic solution 
for large Bouguer number, B, = aa, we concentrate on the 
small B. case. As in [6], the method of matched asymptotic 
expansions is used. When B. is small, the gas close to the 
sphere is optically thin, but away from the sphe:, because 
of its infinite extent, it is optically thick. The asymptotic 
approach has the important advantages of mathematical 
simplicity and physical clarity. In particular, the leading 
terms in the inner and outer expansions for the emissive 
power represent, in themselves, simple physical situations. 

Related work in neutron transport theory is contained in 
[9] and [lo], which give an asymptotic diffusion solution for 
large distance from the sphere. This solution is only part of 
the outer expansion and, by itself, would not match the 
inner expansion. 

2. ANALYSIS 

This work is limited to radiative energy transfer, conse- 
quently the divergence of the heat flux is zero. Let g be the 
net radial heat flux, then r%j is constant A dimensionless 
heat flux Q, proportional to r*g is used in the analysis. It-is so 
defined that Q = 1 when the gas is transparent, otherwise 
IQ 1 < 1. Our definitions of 8 and Q are the same as those in 
in [6], hence the equation for the heat flux is [6] 

2B:Q = -(l + z - B,)exp [-(z - B,,)] + (z + B,,)’ 

x E,(z - B,) + [l + Cz2 - Bt)*] exp. [ -(zz - Bi)*] 

- (z* - B;) E,[(z’ - B’)*] Y 
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+ 2 i &z,){exP L-G - zJ1 + (z + z,)E2(z - 4) dz, 
&. 

+ 2 7 &z,) {exp [ -(zl - z)] - (z + zi) E,(z, - z)} dz, 
I 

- 2 4 &(zi) {exp [ -(z2 - Bi)* - (z: - BZ)*] 
B” 

+ [(z’ - B;)f - (z; - B:)f] E2[(z2 - B;)* 

+ (z; - B:)+]} dz,. (1) 

The independent variable is the optical depth z r ar, which 
also serves as the outer-region independent variable, and, 
for convenience, we use a modified emissive power s = 
z@(z). An integral equation for 8 is obtained by differentiating 
equation (1) with respect to z 

28(z) = E,[(z2 - B,Z)+] - E&z - B,,) + B,E,(z - BJ 

+ 7 &z,){E,(~z, - zl) - E,[(z’ - B,‘)* 
& 

+(z: - B’)+]} dz,. Y (2) 

Equations (1) and (2) are valid for all B,; they constitute the 
basic equations for the subsequent analysis. Equation (2), 
which was fust given by Marshak [9], can be derived by 
alternative methods. For example, since the divergence of 
the heat flux is zero, the emissive power is given by 

4aT4=4jld61=2n j Idp. (3) 
0 -I 

We then obtain equation (2) when equation (3) is combined 
with the solution of the transfer equation for the intensity I. 

Outer expansion 

We insert the following outer expansion 

@“(z; B,) = b,(B,) 0b”’ (z) + 6,(B,) O’;)(z) + . (4) 

valid for small Bu where 6,(B,) & 6,(B,,) p . . . , into equation 
(2). In addition, the exponential integral functions are ex- 
panded for small B. and by means of their recurrence 
relations, we obtain for the first approximation 

f@)(z) = $E,(z) + ) 7 Og”‘(zl,[E1(lzl - zl) 
0 

- E,(z + zJ1 dz,. (5) 

where 6, = Bi and E,(z) = (e-l/z). It should be noted that 
both E,(O) and E,(O) are infinite and thus equation (5) is a 
singular integral equation. As we demonstrate later, 08) (0) 
is also infinite. 

We also use an expansion for the heat flux 

(MB3 = v,UUQ, + NUQ~ + ., (6) 

where the Qi are constants. Since Q does not depend on r, 
expansion (6) is valid in both the outer and inner regions and 

therefore is uniformly valid to begin with. By means of 
expansions (4) and (6), we obtain from equation (1) 

Q, = e-’ + 2[ @‘(zi) [Es(z - ZJ + zE,(z - z~)] dz, 

+ 2 7 @“(zi) [E,(z, - z) - zE,(z, - z)] dz, 
Z 

- 2 7 6%) &(Z + Z1) f ZE2(Z + Z&l dz,, (7) 
0 

where v,(B,) = 1. Note that we can derive equation (5) by 
differeutiating equation (7). We determine the constant Q. 
by setting z = 0. This yields Q, = 1, and hence the uniformly 
valid first approximation for the heat flux is its transparent 
value. The second approximation is determined in the inner- 
region subsection. This result for Q. and the singular nature 
of f@) (z) have a simple physical interpretation, which we 
now discuss. 

The energy emitted per second by the surface of a black 
sphere is 4xa 2- = 4na2aT$. For small B. we can imagine, qv 

with equal regard, either a small with a = 1 or the converse. 
In the first interpretation, with a = 1, we obtain the trans- 
parent limit, i.e. Q = 1, as B, = a + 0. In the second 
interpretation, when B. = a -+ 0, the sphere shrinks to a 
point, and if T, is constant, the emitted flux goes to zero. 
In this situation, the solution of equations (1) and (2) is the 
trivial one of Q = 0 and 8(z) = 0 with z # 0. This solution 
applies when T, < T,, and the sphere is a point sink. 
Since the point-sink solution is of less interest than the 
point-source one, we assume T, > T, (in the second inter- 
pretation) and require the sphere to emit a constant flux 
as it shrinks to a point source. Hence, a*T$ is constant and 
T, + CC as a + 0. The temperature of the gas adjacent to 
the sphere, T, also goes to infinity as a + 0. From the point 
of view of the outer region, to a first approximation the sphere 
looks like a point source with an infinite temperature. Our 
second interpretation thus explains why @‘(01 is infinite. 

This infinity is eliminated later when we form a composite 
emissive power @). The Q = 1 + . . . result is also con- 
sistent with this interpretation, since a point source can emit, 
but not absorb, photons. 

Equations (5) and (7) (with Q. = 1) are equivalent equa- 
tions for a point source in an infinite medium. We obtain 
their exact solution from neutron transport theory. From 
equation (3), we note that the average intensity J I dn equals 
4cT4. The point-source neutron solution in [ll] is for the 
average intensity minus its value at infinity. 
this solution is [ 121 

hi our notation, 

et)=:+:/{1 +iln(G)+$ 

I 

x[n2 + ln*(zj][ 
I 

e-“’ ds. (8) 
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The quantity [4@)(2)/3] - 1 is tabulated in [ 131. We can also 
accurately approximate @‘I, for all values of z [ 121, by 

n2-3 
e&z) = ;s,(z) + a - ---$- ( ! E2(4. (9) 

In the rest of this work, because of its simplicity, equation (9) 
is used instead of equation (8). The ficst term on the right- 
hand side of equation (9) contains the singularity that domi- 
nates when z is small. The second term gives the behaviour 
for large z. it can be obtained directly by means of the Rosse- 
land diffusion approximation [lo, 121. 

Inner expansion 
In the inner region adjacent to the sphere, we use as the 

independent variable of order unity a coordinate, p = 
(r - a)& based on the sphere’s radius. Hence, we have 
z=B,,(l +p)and 

&z) = 28(z) = E”(1 + @o) = B”&), (10) 

where 6((p) = (1 + p)tR(p). The inner expansion is written 
as 

&(p; B”) = dov+,)eg)(p) + A&,)0’:‘(p) + .,., (11) 

where A,%A,&..., and again we limit the analysis to 
the first approximation. By substituting the foregoing 
into equation (2) and then expanding for small B, we obtain 
A,(BJ = 1 and 

e$(p) = f[~ + i - (2~ + pz)*i. (12) 

The integral in equation (2) does not contribute to the first 
approx~ation; only the ~homogeneous terms contribute 
to equation (12). 

As in the outer approximation, the fast inner term for 8, 
given by I&e&)/z, has a simple physical interpretation. 
When written in terms of the temperature, it becomes 

1 - &I [T&)1 4 = ~ 
2 T:‘---2- m 

1++4. 
(131 

This relation is easily derived once the gas is assumed 
transparent At any point in the gas, we then have I = aT$/n 
when p,,,<p<l and l=aT$/n when -l<p<pn. 
In other words, the intensity at r depends on whether the 
sphere or gas at infinity is being viewed. With thii equation 
(3) directly yields equation (12). It should be noted that 
equation (12) is also given by Ryhming [S]. 

We now introduce Q, = 1 = A, and equations (6), (10) 
and (11) into equation (1) and expand for small B.. All terms 
of o(l), o(B,), o(Bt), and o(Bi A ,) cancel, thereby yielding 

where vr = E.. By substituting equation (12) into the above, 
we tind Qr = -3. Hence, Q is now given by 

Q=l-f&t..., (14) 

where the B, term accounts for the reduction in heat trausier 
due to absorption of radiation incident on the sphere’s 
surface. 

Although the inner expansion 8”)(p) = @(p)/(l + p) 
goes to zero as p --) co, it is not uniformly valid. This is 
because @) goes to zero as (4p2)-‘, whereas 6%“) goes to 
zero as 3B,/4p. However, when T, < T,, the composite 
solution to a first approximation is given by the leading 
term of the inner expansion (as a consequence of 19(‘) going 
to zero when p -+ cc). In the T, < T, case, the heat flux 
is -(Bd3) + . . . . 

Matching and composite sdution 
It is easy to show [12] that the inner part of the leading 

term of the outer expansion is B$/4z. It is important to note 
that this result stems from the E, term in equation (9). This 
means that the Rosseland diffusion result given by the 3 
term in (9) does not match the leading term of the inner 
expansion. 

The outer part of the leading term of the inner expansion 
is also Bt/rlz. In contrast to the large B. case [6, 141, the 
leading terms match directly without determining auy 
constants 

A composite first approximation for 8(z) is readily shown 
to be [12] 

+s e-z-1 3 

2 [ 
-+,-($$)E,(” 1. (15) 

42 

3. RESULTS AND DISCZJSSION 

The results for large B, equivalent to equations (14) and 

(1st are [61 

1 < B, (Ma, b) 

where g is Hopfs function, which is tabulated in Kourganoff 
[ 153. If we now use the leading terms from equations (14) 
and (16a), we obtain the interpolation formula, useful for 
all B,, 

Q= ’ 
1 + (3BJ4) 

originally given by Heaslet and Baldwin [16]. 
Ryhming [s] and Viskanta and Crosbie [4] have given 

exact numerical results when there is an outer concentric 
sphere with a finite radius r,. We can compare our small B. 
results with theirs only when simultaneously their ~1(1 $ 1 
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and 1 g ark The largest value of err, used by these authors reason and partly because of the ad hoc nature of equation 
is 10, and all results attributed to them in Figs. 1 and 2 are (17). 

10-3 
d 10-l , 2346 

I 

FIG. 1. @(z; B,) vs Z. 

02 - 

1 

lo-22 
102 10.' 2 34 68,0 I02 

6” 

FIG. 2. Q vs. B, 

for this value. Unfortunately, none of Viskanta and Crosbie’s 
results satisfy both requirements. Thus, Fig. 1 compares 
es) only with Ryhming’s work; the two agree quite well. 
One interesting feature is the rapidity with which S!$ de- 
creases. By the time z = lOB, or r = lOa, @g) is less than 
lo-*. The thickness of the layer adjacent to the sphere is 
thus of O(a). 

Figure 2 shows the heat transfer as given by equations 
(19 (16a), and (17). Only Rhyming’s numerical value at 
B, = 0.1 agrees with the asymptotic results. His and Vis- 
kanta and Crosbie’s result at B, = 5 differ from equation 
(16a) because of the presence of the outer sphere. At B. = 1, 
their results differ from equation (17) partly for the same 

If we evaluate relation (15) at the surface, where z = B,, 

we obtain B);‘(BJ = : + o(B,) in accord with Fig. 1. From 
this it is easy to show that T, satislies T. 2 ($)* 7, = 0,841 T, 
There is thus a lower bound for the temperature of the gas 
adjacent to the wall. Although derived for a sphere, this 
bound is independent of B. and therefore holds for any 
geometry. 

An interesting approximation, initially due to Chou and 
Tien [2], is the method of regional averaging, sometimes 
referred to as a modified moment method. Hunt [3] has 
applied this to the concentric sphere case without a heat- 
generating gas. For a single sphere, his results are easily 
modified to yield, in the two-region approximation, 

- (3’2’ 22 - 2(z2 B;)’ + 3B,2 1 = 

4 + 3B, -’ 
(18) 

Z 

with Q’*’ given by equation (17). This latter result lends 
further justification for equation (17). Although not shown 
in Fig. 1, equation (18) agrees quite well with Ryhming’s 
results. (See Figs. 2 and 3 in [3] for a comparison of the two- 
region and three-region approximations with Ryhming’s 
results.) It is easy to show that, for small B, equation (18) 
agrees with the inner expansion close to the sphere and 
with 3B,2/42 when I is large. (When B, is small and z is 
large, the quantity 3Bi in the numerator of (18) is important. 
The quantity 3B, in the denominator is unimportant at 
any z; it is important, however, when B” is large.) Further- 
more, neither Q’*’ nor Q”’ is restricted to small B,. Expand- 
ing equation (18) for large B, shows that its leading term 
agrees with its equivalent in equation (16b). The two- 
region approximation therefore gives good results for’@ 
and Q for all z and all B, 

The three-region approximation, which agrees closely 
with Ryhming’s results [3], is considerably more compli- 
cated than the two-region approximation. For small B,, 

one can show that Qt3) - 1 - %B, + , which agrees 
with equation (14). 

Olfe [17] has recently put forth a modified differential 
approximation, which he subsequently applied to the con- 
centric sphere problem [8]. When his results, which are 
mom complicated than that given by the two-region 
approximation, are modified for a single sphere and expanded 
for small B,, we obtain Q = 1; for the emissive power we 
obtain equation (18) minus the unimportant 3B, term in 
the denominator. The quantity g, given by equation (8) 
in [8], must first be written in terms of the inner variable 
p before the Bu expansion is performed. The leading terms 
for Q and 8 are thus identical to the two-region approxima- 
tion. 
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INTRODUCTION 
EN~GY transfer by thermal radiation within absorbing and 
emitting media has received considerable attention in 
recent years. Transient radiative transfer processes, however, 
have received only limited consideration. This study is 
concerned with unsteady energy transfer by radiation in a 
stationary plane layer of a non-conducting medium. 
Nemchinov [l] utilized a two-flux model to study transient 
cooling of a layer in the absence of walls while Viskanta and 
Bathla [2] employed an exact formulation to study the 

t Present address: Department of Mechanical 
Engineering, Indian Institute of Science, Bangalore-12, 
India. 

same system when the layer is symmetrically heated by an 
external diffuse and collimated radiant flux. The latter 
authors also cite a number of other transient radiative 
transfer studies most of which are concerned with a spherical 
geometry. The present study is distinguished from earlier 
investigations by the presence of walls and unsymmetrical 
boundary conditions. The system with the conditions 
imposed here is analogous to the conventional problem 
in heat conduction and, therefore, permits ready comparison 
with results for simultaneous conductive and radiative 
transfer. Exact radiative transfer methods are employed to 
formulate the energy transfer problem and two techniques 
are developed to construct solutions to the governing energy 
equation. 


